Project report - Summer 2021

Scenarios of coastal response to Sea Level Rise: a machine learning
based graphical user interface

Student: Ngoc Nhu Hoang
Mentor: Daiane G. Faller
Faculty supervisor: David M. Holland

ol el I 51 0

vl e ibgiicljgigrid cnla

=5 cs"c K2 NYU |ABUDHABI

Center for Global Sea Level Change
New York University Abu Dhabi
August 6, 2021

Contents

1 PROJECT DESCRIPTION

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5
4.6
4.7

PROJECT OBJECTIVES

BACKGROUND

Bayesian Networks
Parametersand data
Programming languageusage

DATA PROCESSING

Datareading
Elevation e
Sealevel rise projections L
Vertical land movement o
441 Firstinterpolationstep
442 Second interpolationstep Lo L
Adjusted elevation oL oo
Land cover e e
Coastalresponse

5 DATA DISCRETIZATION

51
52
53
54
5.5
5.6

Elevation e e
Vertical land movement o
Adjusted elevation oo
Land cover e e
Coastalresponse
Training and testingdata 00 0L

6 BAYESIAN MODEL

6.1
6.2
6.3

Model construction e
Model training
Model evaluation e
6.3.1 Scenariotestingo oL
6.3.2 10-fold cross validation

7 FUTURE DEVELOPMENT

8 ACKNOWLEDGEMENT

22
22
22
23
24
25
26

27
27
27
28
29
35

37

37

1 PROJECT DESCRIPTION

Future impacts caused by climate change are expected to widely affect coastal areas
with landscapes encompassing a variety of responses to different sea-level rise (SLR).
The landscape response is related to their geomorphology, geologic setting, ecology, and
development level (Lentz et al., 2016 [1]). So, SLR can cause a range of threats to natural
and built environments, and understanding SLR-induced hazards is essential for decision
making. Knowing where available coastal habitats are likely to be resilient, transitioning
to a new state, or requiring a buffer zone to accommodate landward translation is essential
for developing management and resource allocation strategies that preserve the coastal
system’s intrinsic values.

The usual methodologies applied to identify the coastal response to SLR usually focus
on one response. Simultaneously, alternative methods can provide a range of potential
reactions like inundation or dynamic response in a specific landscape (Strauss et al., 2012
[2]). Besides inundation seems a straightforward evaluation accounting the vertical and
horizontal movement of water-based in topography and projected sea level, a rigorous
application requires accounting for technical and data uncertainties (Lentz et al., 2016
[1]). On the other hand, several regions will develop a dynamic response due to land use,
ecological and morphological processes (i.e., erosion, deposition, tides, wave range, etc.).
A technique that can make probabilistic assessments to communicate the uncertainty such
as magnitudes of SLR, storminess, and extrapolation from cross-shore profiles is crucial to
generate reliable information of a coastal system.

We aim to develop a probabilistic approach using a combination of Bayesian Network
(BN) to calculate the probability of a long-term shoreline change given physical parameters,
relative sea-level rise, and land use. BN is ideal to combine historical, current, and
projections of phenomena by integrating observations to evaluate relationships between
forcing factors and coastal responses. The assessment of that information can be expressed
by numbers or percentages or by established likelihood terms. As such systems, in
general, are multivariate and involve a comprehensive combination of variables, the
use of an “adaptive and learning” process can make the task less complicated. The
constructed response can cover as much of the system parameter space as possible. The
platform consists of a user-friendly interface, a data-driven model using BN, and an
interactive coastal response that considers different parameters in a region to determine
both inundation and dynamic response by providing statistical analysis and a range of
adaptation scenarios for SLR.

The Python scripts written for this project can be found on the team’s GitHub reposi-
tory: https://github.com/sashanksilwal/CRSLR.

https://github.com/sashanksilwal/CRSLR

2 PROJECT OBJECTIVES

The main feature of the Center for Sea Level Rise platform is to enable a user to create
probabilistic scenarios of coastal response (inundation or adaptation) due to sea-level rise
using an available dataset for a specific region. With this method, we will be able to:

* identify the coastal landscape dynamic response to SLR;
¢ guide to coastal resource management decisions;

e future SLR impacts and uncertainty against ecological targets and economic con-
straints.

The project is divided into four main stages:

1. Stage 1:
* Read spatial data images as matrix
¢ Develop a Bayesian Network based in examples
* Develop visual aid for Bayesian inference

2. Stage 2:
¢ Integrate spatial data (test case) and BN
¢ Use real data to train the BN to create future scenarios
* Apply the visualization

3. Stage 3:
* Develop a user interface
¢ Connect and troubleshooting

4. Stage 4:
¢ Test case finalization and scientific disclosure
¢ Launch the platform for user data

For the duration of my internship at the Center for Sea Level Rise, I was involved in
the first two stages of the project, in which my team worked on reading the data as suitable
formats, processing the datasets according to their specific nature and usage, discretizing
the data into intervals and bins, building the Bayesian model with the pre-processed data,
evaluating the model, as well as creating graphs and maps at various stages of the entire
process to visualize and communicate the data effectively.

3 BACKGROUND

3.1 Bayesian Networks

A BN framework consists of an interactive, fast and efficient tool for modelling that
evaluates the probability of an outcome based on variables causal relationship. Bayes’
theorem relates the probability of one event R given the occurrence of another event O
(Bayes, 1763; Gelman and others, 2004) as:

p(Oj|R;) x p(R;)

The left side of the equation p(R;|O;) represents the conditional probability of a
particular response, R;, given a set of observations O;. For example, a distinct coastal
response could be a joint occurrence of a specific sea-level rise rate and a particular coastal
habitat type. The ith response scenarios refer to the number of inputs scenarios that can
be considered, and the jth observations refer to the set of observations considered in each
scenario. On the right side of the equation, p(Oj|R;) is the likelihood of a known response’s
observations. This term indicates the correlation between observation and response, such
as the rate of sea-level rise and habitat type. The correlation is high if the observations are
accurate and if response variables are sensitive to the observed variables. The numerator
p(R;) term is the prior probability of the response, which is the probability of a particular
response integrated overall expected observation scenarios. The denominator p(0O;) is a
normalization factor to account for the likelihood of the observations.

A BN consists of a qualitative part (a directed acyclic graph - DAG) and a quantitative
part (parameters/variable specifying the conditional probability of each node given its
parents described in DAG). A conditional probability table (CPT) quantifies the strength
of influence between child nodes (variable) and parent nodes (Knochenhauer et al., 2013).
The qualitative or quantitative value represents a state of a node. Each node must have, at
least, two states and must represent all values that the node can take (Cain, 2001).

Using this procedure, BN establishes the relationships between variables and param-
eters using directed links so-called causal relationships which represent the conditional
probabilities trained on observations, probabilistic or deterministic equations or expert
(empirical). One of the main features of BNs is the robust consideration of uncertainty;
BNs propagate the uncertainties in the relationships to provide predicted probability for
each discrete outcome. In our model we test the ability of BNs to propagate uncertainty,
perform inference and calculate conditional probabilities and structure the integration of
stochastic, deterministic and expert (empirical) relationships.

3.2 Parameters and data

To make probabilistic scenarios, we need to identify shoreline phenomena and parameters
that will affect the coastal response. The BN's capacity to correctly represent the processes
strongly depends on the quality and completeness of input data. Accordingly, we selected
predictor variables used to build the BN model (Figure 1) and will create parameters to
predict the coastal response. The framework use information of SLR projections, vertical
land movement and elevation to create an adjusted elevation that will be used along with
land cover type to predict the coastal response based on the study conducted by Lentz et
al. 2016 [1].

Sea Level Rise
Projections

Adjusted Elevation

Vertical Land
Movement

Elevation

l

Land Cover/habitats
type

Coastal Response

Figure 1: Schematic diagram showing the Bayesian network coastal response model.

The first step will be the adjusted elevation computation using vertical movement,
elevation, and SLR projections:

Adjusted elevation = Elevation — SLR projection + vertical land movement + uncertainties

Sources of uncertainty include elevation data accuracy, vertical datum adjustments, and
land vertical movement’s interpolation from the original data point. These geospatially
explicit input uncertainties are propagated through the model to produce a probability
mass function p(adjusted elevation) for every grid cell. Once we determine the adjusted
elevation we will combine it with the land cover/habitats and predict the coastal response.

3.3 Programming language usage

The scripts for the main program are written entirely in Python, making use of various
Python packages and libraries like NumPy, SciPy, pandas, GeoPandas for data processing,
pgmpy for probabilistic models-related functionalities, and Matplotlib and seaborn for
data visualization.

4 DATA PROCESSING

4.1 Datareading

For the first step, we first familiarize ourselves with the data formats used throughout the
project. The data is majorly stored in geospatial formats, namely GeoTIFF and Shapefile.
Our first task is to research about Python libraries and packages suitable for reading these
formats and ensuring the files’ readiness for further processing, especially by storing them
in data structures that are compatible with other Python libraries for data analysis and
data manipulation.

The elevation base map is available in GeoTIFF format. We mainly use two Python
libraries to process this format: Rasterio and GeoRasters. Rasterio’s open () function was
used in tandem with read() to return a NumPy array. All cells in the original raster
tile that are of null values are retained in the array, returned in the form of NumPy’s
NaN. GeoRasters provides two functions from_file() and to_geopandas () which returns
a GeoPandas dataframe, compatible with further analysis using both GeoPandas and
pandas. Unlike NumPy array format returned using Rasterio, this dataframe returns only
original data cells that do not contain null values. Each of the eligible cell makes up a row
in the dataframe.

Habitat data is available as a shapefile. GeoPandas’s read_file() is particularly
useful for this format, as it reads the file into a GeoPandas dataframe.

Throughout the processing and model training process, most of the data is structured
in either NumPy arrays or GeoPandas dataframes. This way, we can more easily utilize
the various data analysis and data visualization functionalities from many Python libraries
that are compatible with these formats, namely NumPy, GeoPandas, pandas, matplotlib.

4.2 Elevation

The project focuses on the coastline of Abu Dhabi, capital city of United Arab Emirates,
as the main case study. Figure 2 shows a rough estimation of the area of interest to the
research.

The elevation map (Figure 3) serves as the base map for processing all other variables.
As such, elevation data needs to be provided with high quality and accuracy. This map
will be used to project the rises in sea level in different scenarios, from which we can
estimate the levels of submergence for different land type across the region. Elevation data
is provided in GeoTIFF format.

a

f
W A
ni

—alatiAl

Figure 2: Map showing parts of Abu Dhabi coastline. Source: Google Earth.
Elevation (m)

24.6°N 50
4 _ :) P

3 b - .;i'

24.5°N ﬁ . _ &

24.4°N

24.3°N

54.1°E 54.2°E 54.3°E 54.4°E 54.5°E

MR,
54.6°E 54.7°E

Figure 3: Elevation base map. Source: Xianwei Wang.

The elevation base map used in this project spans around 54.013°E to 54.700°E and
24.212°N to 24.700°N. When loaded as a NumPy array using the Rasterio library, the map
is returned as an array of dimensions 1758 x 2521. As such, the elevation grid (the NumPy
array) contains 4,431,918 data cells. When loaded with using the GeoRasters library, the
resulting elevation dataframe contains 1,789,661 rows, corresponding to the number of
grid cells with non-null values. Each non-null cell in the grid, and equivalently each
row in the dataframe, contains an elevation value for the corresponding location on the
map, measured in meters. Further inspection of the dataset shows that the max elevation
value is 83m, while the min value is -89m, and the mean elevation is 7.1m with a standard
deviation of about 10m.

4.3 Sealevel rise projections

The project uses a wide range of sea level rise projections corresponding to different
Representative Concentration Pathway (RCP) scenarios, which are associated with green-
house gas concentration scenarios, as outlined by the Intergovernmental Panel on Climate
Change (IPCC). Sea level rise scenarios used in this project are based on the study by Irani
et al. [3] which examines the sea level rise level in the Persian Gulf and Oman Sea in future
time windows.

Greenhouse Gas Emission

Prediction L) Intermediate)
Mitigation Intermediate High Extreme*

window -High

RCP 2.6 RCP 4.5 RCP 6 RCP 8.5

2046-2065 | BHIB-0.34 (0.27) | 0.2-0.37 (0.3) | 0.2-0.36 (0.28) | 0.25-0H8 (0.33)

2081-2100 | PI29-0.61 (0.42) | 0.36-0.7 (0.52) | 0.37-0.71 (0.54) | 0.51-098 (0.7)

2100 | @BE-0.67 (0.49) | 0.4-0.8 (0.6) | 0.42-0.81 (0.61) | 0.6JH (0.83) 25

Table 1: Regional sea level rise projections. Unit: Meters. SCenarios used it this project.

Source: Irani et al [3].

For each prediction time window, we choose the left end of the range in lowest scenario
(Mitigation) and the right end of the range in highest scenario (High). Additionally, we
added an Extreme scenario of 2.5m sea level rise as a hypothetical test case for the model.
This number is identified as the average global sea level rise if the Thwaites Glacier melts
completely. In total, we use seven sea level rise projections for the model. In each scenario,
the sea level rise is applied to every data point using the deterministic equation to calculate
adjusted elevation.

4.4 Vertical land movement

Vertical land movement is one of the key factors in studying sea level rise, as it signifies the
average change of a surface over long-term periods of time. Vertical land movement may
vary across the region due to isostasy or other ecological and morphological processes.

The vertical land movement data is retrieved from a global GPS vertical velocities
dataset from the study of Schumacher et al. (2018) [2]. Out of over 12,000 data points in the
dataset, 27 are selected to be relevant to this project. These data points are scattered across
the area near the Persian Gulf and the coastline of the UAE, spanning 52.588°N to 54.960°N
and 23.721°E to 24.797°E. Meanwhile, the elevation base map covers a narrower area with
much higher density, containing over 1,500,000 data points, as previously discussed. The
disparity between the two datasets is roughly visualized in Figure 4, with red and blue
points representing the vertical land movement data and elevation data, respectively.

248

4.6

4.4

24.2

24.0

238

525 530 535 540 545 5.0
Figure 4: Comparison of vertical land movement data and elevation data.

To ensure the consistency between vertical land movement and elevation data, the
vertical land movement data points need to undergo an interpolation process to generate
a 2D grid containing continuous vertical land movement estimates. For this processing
stage, we use two interpolation steps with two respective interpolation grids.

4.4.1 First interpolation step

This first step involves interpolating based on original vertical land movement data points.
The goal of this step is to generate new data points in between, since the original data points

are relatively far apart. Using an intermediate grid before interpolating onto the elevation
grid helps to create a smoother surface of estimates. For a skeleton grid to be constructed,
we need to know the coordinates over which the grid span, and the dimensions of the
grid. The grid boundary information is easily extracted from the coordinates of the points.
To determine on grid dimensions, we must decide on the density of cells we want to put
between points. We choose to base this density on the current distances among the points.

First, based on the original 27 data points, we locate the boundary points, that is,
points that are southernmost, northernmost, easternmost, and westernmost. Original data
points are plotted in Figure 5 and the detected boundary points are marked.

248 b 4
M6
L]
)
[]
244 “
VLM
n
e . e 08
= & 00
8oz -
e 08
>< . . >< 16
. 24
.
-
240
L]
-
L]
L] L]
238 . .
X A
52.5 53.0 53.5 54.0 54.5 55.0
Longitude

Figure 5: Boundary vertical land movement data points.

With the boundary points detected, we can generate pairs of points that span the area
and calculate the distances among them. We use a function that takes in longitudes and
latitudes of two points and returns the distance between them in meters. This function
utilizes the Haversine formula:

= 2rarcsin N s (P22 91) 4 cos(gn) cos(ga) sin? (1221 M)]

in which d is the distance between the two points (in meters), ¢1, ¢ are the latitude of
point 1 and latitude of point 2 (in radians), A1, A are the longitude of point 1 and longitude
of point 2 (in radians), and r = 6,371, 000 is the radius of Earth (in meters).

10

Using the function described above, the North - South span of the vertical land
movement data points is determined to be about 119,548m, and the East - West span
is about 240,370m. With these estimates, we decide that generating a distance of 100m
between two points will create a good density for the skeleton grid in this step. As such,
the dimensions for the grid are determined to be 1196 x 2404 (1196 rows corresponding to
the North - South span, and 2404 columns corresponding to the East - West span).

With the grid boundary coordinates and grid dimensions, the next step is to construct
a coordinate matrix as input for the interpolation function.

We first use the linspace () function from NumPy to generate two 1D arrays as base
horizontal and vertical coordinates:

x = np.linspace(x_min, x_max, nx)
= np.linspace(y_max, y_min, ny)

<
|

In which x_min, x_max signify the span of longitudes (52.587928, 54.9595), y_max,
y_min signify the span of latitudes (24.796595, 23.72148), and nx, ny signify the dimensions
of the grid as discussed above. x, y are two arrays of dimensions (2404,) and (1196,)
respectively.

The linspace() function returns evenly spaced numbers over a specified interval,
with the first and second parameters representing the start and end values of the sequence.
Since our data points lie entirely in the Northern hemisphere, the point coordinates follow
a Cartesian coordinate system with lower left origin. This is the reason why we need to
use y_max as the first parameter and y_min for the second parameter when calculating y,
as opposed to the min - max order for x. Next, we use x, y as input coordinate vectors for
the meshgrid() function:

Xv, yv = np.meshgrid(x, y)

The above line of code returns two coordinate matrices, each of dimension 1196 x
2404. Each cell in the xv matrix contains the x-coordinate (or longitude) of the point at
that location, whose y-coordinate (or latitude) is stored in the corresponding cell in the yv
matrix. These two matrices, in turn, serve as inputs for the griddata() function from the
SciPy library.

The griddata() function takes three main parameters: data point coordinates, data
point values, and point coordinates at which to interpolate data. The first parameter,
data points coordinates, is provided using the (X, y) pairs of the original data points
(columns Longitude and Latitude in Figure 6) in the form of an array size (27, 2) (27
points, or 27 pairs of coordinates). The second parameter, data point values, is taken
from the corresponding vertical land movement rates of the available data points (column
VLM in Figure 6). Finally, point coordinates to interpolate data onto are the two arrays

11

Station Longitude Latitude VLM VLM std

0 NYWV 54.684594 24.796595 -0.207 0.223

1 NYWT 54.115618 24.303783 1.413 0.158

2 NYSM 53.848164 24.056855 -0.856 0.154
3 NYRH 53.141386 24.147625 -0.724 0.166
4 NYRB 52.587928 24.171598 1.812 0.274
5 NYQN 52.763306 24.027073 -0.724 0.135
6 NYPD 53.470797 23.925228 2.240 0.164
7 NYPB 54.162907 24.134528 2.164 0.162
8 NYON 54.429235 24.539444 -0.683 0.170
9 NYNB 54.319712 24.460688 -0.259 0.255

Figure 6: Sample vertical land movement data points.

xv, yv discussed previously. We also specify a method="'cubic' parameter for the function.
According to the SciPy library documentation, this directs the function to use the cubic
interpolation method, which will “return the value determined from a piecewise cubic,
continuously differentiable (C1), and approximately curvature-minimizing polynomial
surface”.

vlim_grid_1 = griddata(vlm_points, vlm_values, (xv, yv), method='cubic')

Latitude

Longitude

Figure 7: Result of the first interpolation step.

At the end of this interpolation step, we get an array of dimension 1196 x 2404

12

containing the interpolated vertical land movement values. The result is roughly visualized
in Figure 7, with the original data points plotted on top of the interpolated values.

4.4.2 Second interpolation step

Similarly to the first step, we also use the griddata() function from SciPy to interpolate
vertical land movement values onto a grid of the same boundary and dimensions as the
elevation grid.

The first griddata () parameter for this step, data point coordinates, is produced by
reshaping the two coordinate matrices xv and yv from dimensions (1196, 2404) to (2875184,
1), and stacking them horizontally. Similar to the first interpolation step, we have a new
array of size (2875184, 2), or 2,875,184 pairs of coordinates.

vlm_inter_points = np.hstack((xv.reshape(-1, 1), yv.reshape(-1, 1)))

Corresponding to these point coordinates are the data point values, which are the
results of the first interpolation step, currently stored in array vim_grid_1. We flatten this
array to get a vector of size (2875184,) named vlm_inter_values.

A skeleton grid is constructed for this step using information extracted from the
elevation map. With the boundary coordinates of the elevation map available as are the
dimensions of the grid, we follow the same technique detailed in the first interpolation
step to produce two coordinate matrices:

XX = np.linspace(x_min_elev, x_max_elev, nxx)
yy = np.linspace(y_max_elev, y_min_elev, nyy)
xxv, yyv = np.meshgrid(xx, yy)

Finally, we are ready to run the second griddata() function with the linear method
to get the final vertical land movement interpolation values:

vlm_grid_2 = griddata(vlm_inter_points, vlm_inter_values, (xxv, yyv),
method='linear"')

At the end of this step, we get an array of dimension (1758, 2521), the same as the
elevation grid and spanning the same area. However, as we use the values from the first
interpolation step as the base data point values for the second step, the newly interpolated
vertical land movement values actually span a slightly larger area than the elevation data
points, as visualized in Figure 8, with the interpolated vertical land movement values
plotted in lower opacity. To make sure that the values between the two grids are consistent,
we detect all the cells in the elevation grid that contain null values, and replace the values
at the same positions in the interpolated vertical land movement grid with null values.
The result of this is visualized in Figure 9.

13

246 A ‘
oy
%
Y
vl

L¥)
08 3
e 00 § ’
. 08
16 9
: 2474 .

0.8
oo
08
16
24

5.0 541 M2 M3 544 M7
Longitude

Figure 8: Result of the second Figure 9: Interpolated vertical land
interpolation step. movement grid after modifications.

An observation is clear when we plot the original data points on top of this grid. The
elevation map spans an area that covers 6 out of the original 27 vertical land movement
data points. This was also clear from Figure 4. We have the final vertical land movement

map as Figure 10. Now, each cell on the base map has an elevation value and a vertical
land movement estimate.

Vertical land movement (mm)

Zm—p

24.6°N
' LY
0,683 .
24.5°N r g .r!
o |
0.259
0309 Lo
.
24.4°N

24.3°N

-2

54.1°E 54.2°E 54.3°E 54.4°E 54.5°E 54.6°E 34.7°E

Figure 10: Interpolated vertical land movement map.

14

4.5 Adjusted elevation

With data on elevation and vertical land movement available, we can calculate the ad-
justed elevation corresponding to each of the sea level rise scenarios using a deterministic
equation based on the study of Lentz et al. 2016 [1]:

AE = E — SLR + VLM + uncertainties

In which AE is the calculated adjusted elevation (in meters), E is the current elevation
measures (in meters), SLR is the sea level rise projection for a particular scenario being
considered (in meters), and VLM is the vertical land movement estimates (in meters).
Uncertainties in this equation come from each of the boundary variables (elevation, sea
level rise projections, vertical land movement) and are propagated through the network to
result in the probability mass functions for the response variables (adjusted elevation and
coastal response).

Figure 11 visualizes the calculated adjust elevation for one of the seven scenarios
being considered in this project.

Adjusted elevation (m)
2100 High: SLR=1.1m

Z

24.6°N

20

24.5°N »‘é

24.4°N

24.3°N

54.1°E 54.2°E 54.3°E 54.4°E 54.5°E 54.6°E 54.7°E

Figure 11: Adjusted elevation in the scenario of 1.1m sea level rise.

15

4.6 Land cover

The land cover dataset used in this project is stored in the form of a shapefile. We use
GeoPandas’ read_file() to read the shapefile into a geodataframe. The first 5 data points
are shown in Figure 12. The dataset includes a total of 68,412 rows/data points. For each
row, we are particularly interested in the habitat type and the polygon it encompasses,
that is, information in the last two columns Habitats and geometry.

OBJECTID Id HabitatTyp HabitatT_1 HabitatSub HabitatS_ 1 RulelD Shape_Leng Shape_Area Habitats geometry
o Mudflats And Sand intertial POLYGON ((194075.975

0 1 1 1000 oo 1010 Exposed At Low 14 75243216403 2.115300e+06 b 2671979.549,
Tide 194105.053 2...

Ftertial Mudflats And Sand intertial POLYGON (202477.763

1 2 2 1000 i 1010 Exposed At Low 14 4.870493e+04 7.777595€+06 bt 2674966.027,
Tide 203045.295 2...

foridal Mudflats And Sand intertial POLYGON (205824.217

2 3 3 1000 Freridal 1010 Exposed At Low 14 27215216403 1.367130e+05 rhibivn 2675669.812,
Tide 205805.696 2...

it Mudflats And Sand intertial POLYGON ((199076.749

3 4 4 1000 oo 1010 Exposed At Low 14 1.0010236+04 1.424318e+06 o 2676693.733,
Tide 199083.231 2...

. Mudflats And Sand . POLYGON ((212836.986

4 5 5 1000 ':'Let:i‘t'gfs' 1010 Exposed At Low 14 6.023903e+04 1.222009+07 'ﬂfgitt'gfs' 2678391.436,
Tide 212806.558 2...

Figure 12: Sample land cover data points. Source: Jhon Mojica.

Similar to vertical land movement data, the land cover dataset covers a wider area
than the base map that is the elevation data. This is visualized in Figure 13, where the
elevation data points in blue are plotted on top of the land cover map.

Coastal Chiff
Coastal Rocky Plains
Coastal Salt Flats
Coastal Sand Plains
Coral Reefs
Deep Sub-Tidal Seabed
Developed
Dredged Area Wall
Dredged Seabed
Farmiand
Forest Plantations
Gravel Plains
Hard-Bottom
Inland Salt Flats
Intertidal Habitats
Lakes or Artificial Lakes
Mangroves
Maring Structurs
Mega Dunes
Mountains
Rocky Beaches
Saltmarsh
Sand Sheets and Dunes
230 iy Sandy Beaches

: Seagrass Bed
Unconsolidated Bottom
Wetlands

25

25.0

245

240

ooo0OOOOOIOOOOOOIOOES

235

25

Figure 13: Comparison of land cover data and elevation data.

16

To ensure consistency between land cover data and elevation data, the next step is
to intersect the land cover map with the elevation map so that we can have two maps of
the same dimensions, and each data point in the base map can have a corresponding land
cover type. The technique that we use for processing vertical land movement, however, can
not be utilized for land cover. Land cover data is most effectively stored as a geodataframe,
and each row in the dataframe corresponds to a particular polygon of a specific shape, not
a single spatial point or grid cell. As such, it is not optimal to convert land cover data into
a NumPy array for interpolation as we did with vertical land movement. Rather, we need
to conduct this processing stage while treating the datasets as dataframes.

The first step is to load elevation data as dataframe. For this, we use GeoRasters’
from_file() and to_geopandas (). A sample of the elevation dataframe is shown in Figure
14. This dataframe contains 1,789,661 rows, the same number of cells in the elevation grid
with non-null values. Each row also has a corresponding geometry element, which is
generated by GeoRasters to be a square.

row col value X y geometry

0 0 2347 1.0 54.651806 24.700139 POLYGON ((54.65181 24.70014, 54.65208 24.70014...
1 0 2348 0.0 54.652084 24.700139 POLYGON ((54.65208 24.70014, 54.65236 24.70014...
2 0 2349 1.0 54.652361 24.700139 POLYGON ((54.65236 24.70014, 54.65264 24.70014...
3 0 2350 1.0 54.652639 24.700139 POLYGON ((54.65264 24.70014, 54.65292 24.70014...

4 0 2351 2.0 54.652917 24.700139 POLYGON ((54.65292 24.70014, 54.65319 24.70014...

1789656 1757 2516 37.0 54.698750 24.212083 POLYGON ((54.69875 24.21208, 54.69903 24.21208...
1789657 1757 2517 36.0 54.699028 24.212083 POLYGON ((54.69903 24.21208, 54.69931 24.21208...
1789658 1757 2518 37.0 54.699306 24.212083 POLYGON ((54.69931 24.21208, 54.69958 24.21208...
1789659 1757 2519 38.0 54.699584 24.212083 POLYGON ((54.69958 24.21208, 54.69986 24.21208...

1789660 1757 2520 39.0 54.699861 24.212083 POLYGON ((54.69986 24.21208, 54.70014 24.21208...

Figure 14: Sample elevation data points.

Since we are dealing with two geodataframes containing of inconsistent geometries,
we need to explore functions that allow us to find the overlapping components of the two
maps and to retain all the attributes of those parts coming from both datasets. The two
functions we experiment with are sjoin() and overlay() from GeoPandas.

According to GeoPandas” documentation, the how parameter of sjoin determines
which rows from which dataframe are kept, ignored, or duplicated based on the spatial
relationships among their geometries. The overlay () function creates new geometries

17

based on the spatial relationships among them, for example, to create new shapes where
they overlap, or where they do not overlap. Even though these two functions do support
our purpose in this step, we run into the problem of run time. Since both functions operate
based on the differences and similarities between two datasets, their complexities also rise
quickly. Because the functions have to compare every data row from one dataset against
every data row from the other set, it can be estimated that their run time complexities
are of O(m x n). With our elevation dataset containing 1,789,661 points and land cover
dataset containing 68,412 points, the number of necessary computations will be in the
100,000,000,000 range. On top of that, handling geodataframe further complicates the
computations, adding on to the run time. Our tests show that each function takes over
6 hours to fully process the two datasets, returning the desired dataset of overlapping
components. In order to reduce run time to a manageable level, we use a series of pre-
processing steps applied on both datasets before running either sjoin() or overlay().
Our goal is to reduce the number of data points in either or both datasets to a selected few,
such that either overlapping function will only have to process parts of the data without
losing necessary information.

We seek to locate the area that the elevation map spans, and drop all rows in the land
cover dataset that do not interest this area. First, by locating all corner coordinates of the
elevation map, we can create a bounding box made up of a polygon object. We can then
use GeoPandas’ GeoSeries.intersects() function on the geometry column of the land
cover dataframe. This function returns a series containing boolean values depending on
whether a land cover row intersects with the elevation bounding box. Using this series, we
keep only land cover rows that do intersect. At the end of this step, we retain 7057 rows
in the land cover dataframe. Figure 15 visualizes these retained rows, and the elevation
bounding box (in low opacity blue).

We further optimize the land cover dataset by next creating a polygon in the shape of
the entirety of the elevation map. That is, a polygon more specific to the outline shape of
the elevation map, rather than an overarching bounding box. Using the cascaded_union()
function from the Shapely library, we are able to joint all separate geometries in the
elevation dataframe into one single polygon for this step. After that, we use the same
GeoSeries.intersects() function to find all rows from the land cover dataframe (having
been reduced once) that intersect with the elevation polygon. After this step, the land cover
dataset is further reduced to 4798 rows. The result is visualized in Figure 16, in which
the elevation polygon is also plotted in low opacity red. With this, we have significantly
reduced the land cover dataset from the original 68,412 rows while also ensuring that we
retain all rows that overlap with the elevation map at some point.

Next, we use the sjoin() function on the elevation dataframe and the reduced land
cover dataframe with the following set of parameters:

18

Coastal Rocky Plains
Coastal Salt Flats
Coastal Sand Plains
Coral Reefs

Deep Sub-Tidal Seabed
Developed

Dredged Area Wall
Dredged Seabed
Farmiand

Forest Plantations
Gravel Plains
Hard-Bottom

Intertidal Habitats
Lakes or Artificial Lakes
Mangroves

Marine Structure
Mountains

Saltmarsh

Sand Sheets and Dunes
Sandy Beaches
Seagrass Bed
Unconsolidated Bottom
Wetlands

(A XX R X RN X J J

Figure 15: Land cover map after one reduction step using elevation bounding box.

Coastal Rocky Plains
Coastal Salt Flats
Coastal Sand Plaing
Coral Reefs

Deep Sub-Tidal Seabed
Developed

Dredged Area Wall
Dredged Seabed
Farmland

Forest Plantafions
Gravel Plains
Hard-Bottom

Intertidal Habitats
Lakes or Artificial Lakes
Mangroves

Marine Structure
Mountains

Saltmarsh

Sand Sheets and Dunes
Sandy Beaches
Seagrass Bed
Unconsclidated Bottom
Wetlands

55

50

(IR RN RIRE RN X J

5.5 52.0 52.5 53.0 535 54.0 54.5 5.0 6.5

Figure 16: Land cover map after two reduction steps using elevation bounding box and
elevation polygon.

final = gpd.sjoin(elevation_df, habitat_cut_cut, how="left", op="within")

Since we are interested in retaining the geometries of the elevation map and the land
cover attribute, we specify the elevation dataframe first, then the land cover dataframe
second, and set how="1eft". According to GeoPandas” documentation, this will conduct a
left outer join, in which “we keep all rows from the left and duplicate them if necessary to

19

represent multiple hits between the two dataframes,” and we “retain attributes of the right
if they intersect and lose right rows that don’t intersect.”

op="within" specifies the binary predicate we use to define the relationship that
we want to examine among the geometries. The default value is op="intersects", but
we opt for within since this option speeds up the operation significantly, though with
lower accuracy. With this settings, all locations at which a point from the elevation map
coincides with the boundary of a polygon from the land cover map are considered ineligible
according to the sjoin() function, and attributes from the land cover dataframe will not
be retained for those points. Therefore, the returned dataframe final contains a total of
1,789,661 rows since all the shapes from the elevation dataframe are retained, but only
1,478,285 of them come with a specified land cover value. The remaining 311,376, which
lie along boundaries of original land cover shapes, have null land cover values. We use a
customized function to interpolate these missing rows with values from the nearest points.

With this series of data reduction steps and an interpolation step afterwards, we
have significantly reduced the time complexity of processing land cover data. The entire
process, including land cover dataframe reduction, map intersection, and missing values
interpolation now take under 20 minutes altogether. Figure 17 visualizes the final land
cover map ready for the next data processing and model building steps.

Coastal Rocky Plains
Coastal Salt Flats
Coastal Sand Plains
Coral Reefs

Deep Sub-Tidal Seabed
Developed

Dredged Seabed
Farmiand

Forest Plantations
Gravel Plains
Hard-Bottom

Intertidal Habitats
Lakes or Arfificial Lakes
Mangroves

Marine Structure
Mountains

Saltmarsh

Sand Sheets and Dunes
Sandy Beaches
Seagrass Bed
Unconsolidated Bottom
Wetlands

247

ME

o000 OOOOPOOOOGS

245

244

243

242

Figure 17: Land cover types map.

20

4.7 Coastal response

The coastal response variable is a child node of adjusted elevation and land cover type
in our Bayesian Network, as established in section 3.2. The causal relationship between
coastal response and the two parent nodes used in this project is based upon the study
by Lentz et al. (2015) [4], specifically the likelihood estimates based on the particular
combination of an adjusted elevation prediction and the corresponding land cover type.
Table 2 describes the estimated coastal response probabilities for all such combinations
as they are used in this project. The probabilities shown are dynamic response likelihood
estimates, and since the coastal response variable takes up either the inundation state or
the dynamic state, the probabilities for land inundation can be obtained by subtracting the
corresponding dynamic response probabilities from 1.

Land cover type Adjusted elevation ranges (meters)
<-12* | -12to-1 | -1to0 |Oto1 | 1to5 | 5to 10 | >10*

Subaqueous 1 0.9 0.7 0.5 0.1 0* 0
Rocky 0 0.05 0.1 0.5 0.9 1% 1
Marsh/Salt Flats | 0.05 0.25 045 | 065 | 0.9 1* 1
Sandy 0.2 0.4 0.85 | 0.95 1 1 1
Forest 0 0.1 0.45 05 | 075 | 0.95* 1
Developed 0 0.05 0.25 05 | 075 | 0.95* 1

Table 2: Dynamic coastal response probability estimates for land cover type - adjusted
elevation range combinations. Source: Lentz et al. 2015 [4] with modifications (*).

References for each of the land cover types are detailed in the study conducted by
Lentz et al. 2015 [4]. For this project, we make further modifications and estimations for
the probability table to be more suitable for our case study and software usage. Specifically,
we first add two adjusted elevation ranges to include all areas and scenarios in our data
that result in adjusted elevation measures of either below -12m or above 10m. The original
coastal response estimates also do not include the data for elevation range 5-10m for areas
of type Subaqueous, Rocky, Marsh/Salt Flats, Forest, and Developed. Missing values as
such are not allowed in the later construction of the Bayesian Network with the specific
Python library we use. Therefore, we decide to modify the coastal response estimates
with our inferences for the missing values in the columns for < —12m, 5-10m, and > 10m
adjusted elevation ranges. These inferences are based on the existing coastal response
probabilities in other adjusted elevation ranges in the same land cover type. The final
coastal response probability table encompasses relevant expert knowledge and inferences
on the causal relationships among adjusted elevation predictions, land cover types, and

21

dynamic coastal response likelihood, and will be extensively utilized in building, training,
and evaluating the Bayesian Network.

5 DATA DISCRETIZATION

In order to fit the Bayesian Network with our datasets, an additional step is necessary
where we discretize all of the variables into predefined bins or intervals and encode them
with digits.

5.1 Elevation

For elevation data, we define 7 intervals and divide the data accordingly. Like with coastal
response likelihood estimates discussed in 4.7, we base our work on the study by Lentz
et al. 2015 [4], with additions to ensure the model covers the entirety of our dataset. The
elevation (in meters) groups, the specific intervals, and their numeric encodings are as
followed:

e Interval 0: [—89.0, —10.0) - all points below -10m (equivalent to interval (—oo, —10)).

Interval 1: [—10.0, —1.0) - all points from -10m to below -1m.

Interval 2: [—1.0,0.0) - all points from -1m to below Om.

Interval 3: (—0.001, 1.0] - all points from Om to 1m (equivalent to interval [0, 1]).

Interval 4: (1.0,5.0] - all points from above 1m to 5m.

(
(
Interval 5: (5.0,10.0] - all points from above 5m to 10m.
Interval 6: (10.0, 83.0] - all points above 10m (equivalent to interval (10, +o0)).

We use the cut () function from pandas to divide all points into intervals with different
ranges and endpoints inclusion. Since this function does not allow intervals closed on
both sides (like [0, 1]), we opt to create a right-closed interval for interval 3, with modified
left end value to make sure it includes values equal to 0. Figure 18 shows the data points
distribution in all elevation intervals.

5.2 Vertical land movement

For vertical land movement, instead of dividing the data into predefined intervals like
with elevation, we instead seek to divide the data into 3 classes in such a way that the
classes have relatively the same number of data points, regardless of the actual intervals.
For this, we use the function qcut () from pandas. For our specific dataset, the intervals,
defined by the function’s computations, are detailed as followed.

22

600000

00000

400000

300000

Intervals

200000
100000

0
G

Figure 18: Distribution of discretized elevation data.

e Interval 0: (—0.00322,0.000517].
e Interval 1: (0.000517,0.00102].
e Interval 2: (0.00102,0.00288].

5.3 Adjusted elevation

For adjusted elevation, we use the same technique as we do with elevation, in which
we define in advance the intervals, then use pandas’ cut () function to divide the data
accordingly. Overall, the intervals for adjusted elevation do not differ significantly from
elevation intervals. The adjusted elevation (in meters) groups, the specific intervals for
the first scenario (sea level rise projection determined to be 0.18m), and their numeric
encodings are detailed as followed, and their data points distribution is visualized in
Figure 19.

e Interval 0: [—89.179, —12.0) - all points below -12m (equivalent to interval (—oco, —12)).
e Interval 1: [—12.0, —1.0) - all points from -12m to below -1m.

e Interval 2: [-1.0,0.0) - all points from -1m to below Om.

e Interval 3: (—0.001, 1.0] - all points from Om to 1m (equivalent to interval [0, 1]).

(
e Interval 4: (1.0,5.0] - all points from above 1m to 5m.
e Interval 5: (5.0,10.0] - all points from above 5m to 10m.
(

e Interval 6: (10.0,82.82] - all points above 10m (equivalent to interval (10, +c0)).

23

800000

500000
500000
400000
» 400000
5
300000 £ apoooo
200000 200000
o . l o .
0 [
. o 3 o 3 ny
m“\ W8 o@ W9 ant_b oD o

Intervals

0

® &

49-'\ S S o 2 & &
o N R b & = & s
< ¥
Figure 19: Distribution of discretized Figure 20: Distribution of discretized
adjusted elevation for scenario 0. land cover type.

5.4 Land cover

The land cover type data, after being intersected with the elevation base map, is further
clustered into six generalized groups, in which each group assumes a similar coastal
response probability in all of its sub-groups (Lentz et al. 2015 [4]). The original land cover
types as visualized in Figure 17 are grouped according to Table 3. The newly grouped land
cover types are visualized in Figure 21, and their distribution in Figure 20.

Habitats Map

27

246

e
B
o

H Developed
Sandy

. N Marsh/Salt Flats

NN Forest

B subagueous

| EEE Rocky

Latitude (deg)

244

¥ 544
Lengitude (deg)

Figure 21: Generalized land cover groups map.

24

Land cover type Group Land cover type Group

Mountains Rocky Hard-Bottom Subaqueous

Mega Dunes Sandy Inland Salt Flats Marsh/Salt Flats

Marine Structure Developed Intertidal Habitats | Marsh/Salt Flats

) Lakes or Artificial

Coastal Clift Rocky Subaqueous

Lakes
) Rock Armouring/

Coastal Rocky Plains | Rocky Rocky
Artificial Reef

Coastal Salt Flats Marsh/Salt Flats | Rocky Beaches Rocky

Coastal Sand Plains | Sandy Saltmarsh Marsh /Salt Flats
Sand Sheets and

Coral Reefs Subaqueous Sandy
Dunes

Deep Sub-Tidal

Subaqueous Sandy Beaches Sandy

Seabed

Developed Developed Seagrass Bed Subaqueous

Dredged Area Wall | Developed Storm Beach Ridges | Rocky
Unconsolidated

Dredged Seabed Developed Subaqueous
Bottom

Farmland Developed Wetlands Marsh/Salt Flats

Forest Plantations Forest Mangroves Forest

Gravel Plains Rocky

Table 3: Land cover types and corresponding land cover groups.

5.5 Coastal response

Since we do not have real data on coastal response, this step involves using the coastal
response probability table (Table 2) to generate temporary labels for all the data points. In
saying “temporary labels,” we mean as in for a particular data point (a set of observed
values for elevation, vertical land movement, and sea level rise projection), its coastal
response probability is determined based on its adjusted elevation range and land cover
type. In doing this, we are using the adjusted elevation range computed using the deter-
ministic equation relating all three parent nodes of adjusted elevation. In other words, we

25

are assuming an uncertainty rate of zero for adjusted elevation, and use this value and
land cover type to determine the data point’s dynamic coastal response likelihood.

In retrieving temporary labels for coastal response, we retain two sets of labels.
First is the set of coastal response probabilities, that is, the probability of inundation
as well as the probability of dynamic response (P(CR = CRp) and P(CR = CRj), in
which CR denotes an inundation scenario, and CR; denotes a dynamic response, and
P(CR = CRg) + P(CR = CR;) = 1). These labels are extracted through indexing the
coastal response probability table. The second set of labels include binary coastal response
classes, that is, whether the response is inundation (0) or dynamic (1). These labels are
derived using coastal response probabilities, in which a P(CR = CR;) > 0.5 means a
dynamic response (1), and P(CR = CR;) < 0.5 means inundation (0).

5.6 Training and testing data

With all datasets discretized and encoded in numeric form, we move on to merging them
into one comprehensive dataset for model training and testing. For each sea level rise
scenario (encoded from 0 to 6), the sea level rise projection (in meters) is used in the
deterministic equation which produces the adjusted elevation dataset for that scenario.
Consequently, temporary labels for coastal response are obtained. This way, in each
scenario, a dataset including all variables (sea level rise projection, elevation, vertical
land movement, adjusted elevation, land cover type, and coastal response) is produced,
containing 1,789,661 rows/data points. We merge all 7 scenarios into one training dataset,
containing 12,527,627 data points. A sample of this dataframe is shown in Figure 22.

SLR E VLM AE LC CR

0 0 3 2 8 £ 1

1 0 3 2 2 5 0

Figure 22: A sample of the training set.

The testing dataset for the model is the same as the training dataset, sans the two
columns of the two variables we want the model to predict: AE and CR, for adjusted
elevation and coastal response.

26

6 BAYESIAN MODEL

For this project, my colleagues and I have developed two Bayesian models with different
approaches to how we interpret and evaluate the coastal response variable. The first
model, which treats temporary labels for coastal response as discrete classes for training
and testing, will be further explored in my colleagues’ reports for this project. In this
paper, I will focus on the second model, which uses binary coastal response classes and
the conditional probability distribution table of coastal response in building the model.

6.1 Model construction

We recall the architecture detailed in 3.2 that we are using for the Bayesian model:

Sea Level Rise
Projections

Adjusted Elevation

Vertical Land
Movement

Elevation

l

Land Cc;\;zre/habltats Coastal Response

Figure 23: Structure of the Bayesian model.

Using the pgmpy library, we can build a Bayesian model with the structure describe
in Figure 23 by providing directed edges representing the causal relationships among the
variables.

from pgmpy.models import BayesianModel
model = BayesianModel ([('SLR', 'AE'),

('VLM', 'AE"),
('"E', '"AE'),
("E', 'LC"),
('LC', 'CR"),

("AE', 'CR")D)

6.2 Model training

We proceed to train the model on the data variable, which contains the training dataset
we have prepared.

27

from pgmpy.estimators import BayesianEstimator
model.fit(data, estimator=BayesianEstimator, prior_type="BDeu")

In our experiments, training on 12,527,627 data points takes about 15 seconds.

After fitting the model with the training data, a conditional probability distribution
able is generated for every variable/node in the network. These tables quantify the causal
relationship between a node and its child node(s) and will later be used when making
predictions for missing variables, given a set of values of the remaining variables.

The conditional probability distribution for coastal response is currently based solely
on binary classes, 0 and 1, as labels. This method bypasses the important conditional
relationships between coastal response and its parent nodes, adjusted elevation and land
cover. To fully capture these relationships, coming from expert knowledge and inference as
previously discussed in 4.7, we overwrite the existing coastal response conditional proba-
bility distribution table with our own input using the coastal response likelihood estimates
table structured in a format acceptable to the pgmpy library. Figure 24 shows parts of the
original conditional probability distribution table for coastal response computed by the
model based on training data, and Figure 25 shows parts of the updated one.

| LC(@) | LC(1) | LC(3)
B et 4+ Bt +—————————————

| 0.0015615240474760331 | 0.9719101123595506 | 0.9993807282635621 | 0.9998837695848248
R e B T — e

| ©.9984384759525297 | 0.02808988764044944 | 0.0006192717364379489 | 0.00011623041517504298

o e e e e e e

Figure 24: Conditional probability distribution table for coastal response - Model computa
tions.

I
|
|
|
1
|
I
+
I
|
L
|
1
|
|
|
|
|
|
|
1
T+
|
|
|
|
|
|
+
I
|
1
|
|
1
ok
|
|
|
1
|
|
¥
|
|
I
|
1
|

AE(@) | AE(@) | AE(@) | AE(@) | AE(®) | AE(1) | AE(1)

I
]
|
1
1
1
+
:
1
1
1
]
|
1
1
]
!
1
1
+
|
1
1
|
i
1
aL
1
|
1
1
]
1
1
b
1
1
|
I
1
1
b
1
I
1
I
1
|

+ — + — + — + — 4+
+—+ — + — 4+ — 4+
O
w
+ — — + — 4+ — 4
+ — + — + — + — 4+

Figure 25: Conditional probability distribution table for coastal response - Manual input.

6.3 Model evaluation

Now fitted, we can use the model to make predictions on two variables: adjusted elevation
and coastal response.

28

6.3.1 Scenario testing

The first testing approach we take is to test the model on each scenario to compare the
results across all scenarios. We use the function model.predict () from the pgmpy library
on the same dataframe as the training data minus the two columns of variables we want
to predict (adjusted elevation and coastal response). This function returns a dataframe
with two columns, AE and CR, containing the class predictions for adjusted elevation and
coastal response for all of the data points in the test set.

For adjusted elevation, we predict the class that the data is most likely to fall into.
Since there is a finite number of such classes (7 intervals), we use accuracy score, the
number of true predictions over the total number of predictions made, to evaluate model
predictions of adjusted elevation. Table 4 summarizes the accuracy scores obtained when
we test the model on all 7 sea level rise scenarios.

Scenario AE accuracy (0-1)
0 (SLR=0.18m) | 0.9063090719415576
1 (SLR=0.43m) | 0.9063090719415576
2 (SLR=0.29m) | 0.9063090719415576
3 (SLR=0.93m) | 0.9063090719415576
4 (
5(
6 (

SLR=0.31m) | 0.9063090719415576
SLR=1.10m) | 0.7416460435803205
SLR=2.50m) | 0.7154366106206707

Table 4: Accuracy scores for adjusted elevation in 7 scenarios

Adjusted elevation accuracy remains relatively the same for the first 5 scenarios, but
seems to drop quite significantly as soon as we reach the 1.1m sea level rise threshold. The
last two scenarios correspond to High scenario in time window 2100, and the hypothetical
Extreme scenario. We see in later inspection of coastal response predictions how the
uncertainties in adjusted elevation get propagated through the network, showing in the
changes in errors as we move to more extreme scenarios.

For coastal response, pgmpy’s model.predict () function returns a binary class pre-
diction of whether the area will inundate (0) or respond dynamically (1), but this is not
what we focus on. Instead of the state that the coastal response variable is most likely
to take, we are more interested in the probabilities of all states of the variable, which
the model uses to make a discrete class prediction. For this purpose, we use pgmpy’s
model.predict_probabilty() function, which returns the probabilities for all states of all
missing variables. In the case of our models, for coastal response, predict_probability()

29

returns two probabilities CRy and CRj, corresponding to the likelihood of predicting
0 (inundation) and 1 (dynamic response). Since the coastal response variable takes up
either one of these values, P(CR = CRy) + P(CR = CR;y) = 1. We are most interested in
P(CR = CR;), which we interpret as the dynamic coastal response likelihood, and a key
research point of this project.

The predict_probability () function, however, raises another run time complexity
issue. Our tests show that predicting probabilities for one scenario takes over 9 hours. To
counter this, we notice that there usually is a high level of repetition in the dataset: data
points with similiar combinations of elevation, vertical land movement, and land cover
classes. Meanwhile, the source code for predict_probability() suggests that the function
conducts inference for every single data point without consideration of their repetition.
From this observation, we think that using a cache can help to speeds up processing
time. We implement a wrapper function for predict_probability(), in which we use a
Python dictionary to store inferred probabilities for coastal response. Each element of this
dictionary is a (key, value) pair, in which the key is a tuple made up of the sea level rise
class, elevation class, vertical land movement class, and land cover class, and the value is
P(CR = CRy) for that particular set of observations. For each new data point, we construct
the key tuple and check whether it is present in the dictionary (time complexity O(1)). If
not, meaning the model has not made any prediction for that particular combination of
observations, then we run predict_probability() for that point. Otherwise, we search
the dictionary using the keys combination to get the dynamic response probability (time
complexity O(1)). So predict_probability(), which contributes most to the high run
time complexity of the function, is only applied on a handful of points. Our modified
predict function, as shown below, takes around 90 seconds to make probability predictions
for one scenario, according to our tests.

def predict_prob(model, test):
cache_dict = {}
prob_list = []
for _, data_point in test.iterrows():
keys = (data_point.SLR, data_point.E, data_point.VLM, data_point.LC)
if keys not in cache_dict:
pred_df = model.predict_probability(pd.DataFrame([data_point]))
pred_CR1 = pred_df.iloc[0].CR_1
cache_dict[keys] = pred_CR1
prob_list.append(cache_dict [keys])
return pd.DataFrame(prob_list, columns=['CR_1'])

Following are coastal response maps of the temporary labels, of model predictions,
and model errors, from 3 selected scenarios.

30

Dynamic coastal response likelihood (%) - Training data
2046-2065 Mitigation: SLR=0.18m

24.7°N =100 pynamic
N
24.6°N
£
g
e 2
245°N 2
&
E
@
3
S
24 4°N g
=]
2
=
o
24.3°N

Inundate

542°F BA3E &E BA5E S46°E

Figure 26: Dynamic coastal response likelihood map for scenario O - Labels.

Dynamic coastal response likelihood (%) - Model prediction
2046-2065 Mitigation: SLR=0.18m
24 7°N

Cynamic
N

24 6°N
£
@
: 1
24 5°N 2
o
E
2
5
=]
24.4°N 2
F=1
2
[
[

24 3°N

7 “or

R

»

54.1°E . .2°E 54.3°E 54 4°E 54.5°E 54 6°E

Inundate

Figure 27: Dynamic coastal response likelihood map for scenario 0 - Predictions.

31

Dynamic coastal response likelihood (%) - Training data
2100 High: SLR=1.1m

24.7°N =100 pynamic
24.6°N
£
g
e 2
245°N 2
&
E
@
3
S
24 4°N g
=]
2
=
o
24.3°N

Inundate

4°E 54.5°E 54.6°E

Figure 28: Dynamic coastal response likelihood map for scenario 5 - Labels.

Dynamic coastal response likelihood (%) - Model prediction
2100 High: SLR=1.1m
24 7°N

Cynamic
24 6°N
£
@
: 1
24 5°N 2
o
E
2
5
=]
24.4°N 2
F=1
2
[
[
24 3°N

Inundate

H1°E HM2°E M4.3°E 44°E 94.5°E 54.6°E

Figure 29: Dynamic coastal response likelihood map for scenario 5 - Predictions.

32

Dynamic coastal response likelihood (%) - Training data
Extreme: SLR=2.5m

24.7°N =100 pynamic
N
24.6°N
£
i
o 1
245°N 2
&
E
@
3
S
24 4°N z
=]
2
g
o
24.3°N

, _ﬂ'i}:’é‘z“h s, : . B
M1°E 542°E 54 3°E 54 4°E 54 5°E 54.6°E

Inundate

Figure 30: Dynamic coastal response likelihood map for scenario 6 - Labels.

Dynamic coastal response likelihood (%) - Model prediction
Extreme: SLR=2.5m
24 7°N

Cynamic
N
24 6°N
g
@
5
24 5°N §
©
E
2
5
=]
244°N z
F=1
2
[
[
24 3°N

3 R

- < A "
M1°E M 2°E 5 3°E M 4°E

Inundate

45k M6°E

Figure 31: Dynamic coastal response likelihood map for scenario 6 - Predictions.

33

Prediction error (prediction - training) (%)
2046-2065 Mitigation: SLR=0.18m

24 7°N Predicted higher
1 -2
N
24 6°N - 15
- 10
24.5°N g
-5 5
T
g
-0 E
o
24 4°N o
- -5
--10
24 3°N
- -15

At

: Predicted lower
M 2°E M 3°E M 4°E 5 5°E 54 6°E

541°E

Figure 32: Dynamic coastal response likelihood map for scenario 0 - Model errors.

Prediction error (prediction - training) (%)
2100 High: SLR=1.1m

24 7°N Predicted higher
g .
24 6°N
- 10
24 5°N g
]
g ©
8
i3
h=l
o
24 4°N o
--10
24 3°N
- —20

o,

: : s A A Predicted lower
54.1°E 54.2°E 54.3°E 54 4°E 54.5°E 54 6°E

Figure 33: Dynamic coastal response likelihood map for scenario 5 - Model errors.

34

Prediction error (prediction - training) (%)
Extreme: SLR=2.5m
24.7°N

E;ﬁdicted higher
- 30
24 6°N
- 20
24 5°N - 10 %
5
-0 é
o
B
24 4°N a
--10
- —20
24 3°N

Predicted lower

BA4°E BASE A6

Figure 34: Dynamic coastal response likelihood map for scenario 6 - Model errors.

Considering the first prediction errors map, we observe more areas in pale white color
(where predictions are close to labels) than areas in red or blue (where predictions are off
by a level of errors). In the later two scenarios, however, we notice that there are more red
and blue patches. This shows consistency with our earlier discussion on adjusted elevation
predictions, because we see that accuracy for adjusted elevation drops as we move to
more extreme scenarios. Since coastal response is a child node of adjusted elevation in our
network, the error in adjusted elevation predictions gets propagated in the network, which
leads to less accurate coastal response predictions as observed in these three scenarios.

Since we focus on the predicted probabilities for coastal response, and the outputs are
in continuous form rather than discrete classes, we cannot use accuracy score to evaluate
coastal response predictions. Rather, we choose to focus on the absolute error between
model predictions and (temporary) labels. Table 5 summarizes the means and standard
deviations of absolute errors observed in each of the 7 scenarios. Consistent with what we
have discussed, the mean absolute error increases as we move to more extreme scenarios.

6.3.2 10-fold cross validation

The second testing approach we take is 10-fold cross validation, in which the entire dataset
of 7 scenarios is randomly partitioned into 10 non-overlapping parts. In which fold, 9 of
these parts are used to train a model, and the remaining part is used for testing that model.

35

Scenario Means Standard deviations
0 0.018453908176439764 | 0.03934033728310384
1 0.018453908176439764 | 0.03934033728310384
2 0.018453908176439764 | 0.03934033728310384
3 0.018453908176439764 | 0.03934033728310384
4 0.018453908176439764 | 0.03934033728310384
5
6

0.06610062305553042 | 0.06917224142318723
0.05514874573036009 | 0.08523793591422163

Table 5: Means and standard deviations of absolute errors in all scenarios.

The accuracy scores for adjusted elevation as well as means and standard deviations of
absolute errors for coastal response are summarized in Table 6. Since the data is randomly
partitioned, we observe that the accuracy scores and errors are more uniform across all
folds. Overall, we get an accuracy of about 0.85 for adjusted elevation, and mean absolute
error of about 0.03, standard deviation 0.056 for coastal response.

Fold | AE accuracy CR abs errors CR abs errors
means standard deviations
0 0.855946 0.030475 0.056555
1 0.855274 0.030508 0.056552
2 0.855758 0.030525 0.056558
3 0.855717 0.030577 0.056655
4 0.855308 0.030467 0.056475
5 0.855369 0.030517 0.056568
6 0.855743 0.030482 0.056547
7 0.855161 0.030597 0.056689
8 0.855318 0.030500 0.056536
9 0.855589 0.030381 0.056417

Table 6: Accuracy scores and absolute errors from 10-fold cross validation.

36

7 FUTURE DEVELOPMENT

Our work on the project has been highly focused on our case study of the Abu Dhabi
coastline, and many of our programming implementations and modifications are specific
to the datasets we work with. Therefore, more test cases are necessary to further test the
robustness of the code and the model, and to improve the quality and reusability of the
Python scripts. Once the scripts have been refined, the model can be used on another
location and/or geographic area with new datasets.

In the next stages of the project, a graphic user interface will be implemented and
integrated with the Python scripts, allowing users to provide their own datasets and to tune
various model parameters. It might potentially be a good choice to have a certain degree
of data quality required from the users, for instance, a minimum number of original data
points for vertical land movement. This can help to produce more accurate predictions,
and cut down on run time of the program.

8 ACKNOWLEDGEMENT

I would like to thank Dr. Daiane G. Faller for her constant support and mentorship through-
out the project, and for creating a very welcome and encouraging working environment
where I have been able to significantly improve my skills in data analytics and problem
solving. I would also like to thank Dr. Clare Eayrs and Nicola Freissmuth for welcoming
us and coordinating our participation in the project, Dr. David Holland for the opportunity
to work on this project, and Farhana Goha from New York University Abu Dhabi Office of
Undergraduate Research for connecting me with the Center for Sea Level Rise. Lastly, I
would like to thank Farah Ayyad and Sashank Silwal, my colleagues on this project, for
their hard work and support for the past two months.

37

References

[1] E. Lentz, E. Thieler, N. Plant, S. Stippa, R. Horton, and D. Gesch, “Evaluation of
dynamic coastal response to sea-level rise modifies inundation likelihood,” Nature
Climate Change, vol. 6, 03 2016.

[2] M. Schumacher, M. A. King, J. Rougier, Z. Sha, S. A. Khan, and J. L. Bamber, “A new
global GPS data set for testing and improving modelled GIA uplift rates,” Geophysical
Journal International, vol. 214, pp. 2164-2176, 07 2018.

[3] M. Irani, A. Massah Bavani, A. Bohluly, and H. Alizadeh Katak Lahijani, “Sea level
rise in persian gulf and oman sea due to climate change in the future periods,” Physical
Geography Research Quarterly, vol. 49, no. 4, pp. 603-614, 2017.

[4] E. Lentz, S. Stippa, E. Thieler, N. Plant, D. Gesch, and R. Horton, “Evaluating coastal

landscape response to sea-level rise in the northeastern united states—approach and
methods,” 01 2015.

38

	Project description
	Project objectives
	Background
	Bayesian Networks
	Parameters and data
	Programming language usage

	Data processing
	Data reading
	Elevation
	Sea level rise projections
	Vertical land movement
	First interpolation step
	Second interpolation step

	Adjusted elevation
	Land cover
	Coastal response

	Data discretization
	Elevation
	Vertical land movement
	Adjusted elevation
	Land cover
	Coastal response
	Training and testing data

	Bayesian model
	Model construction
	Model training
	Model evaluation
	Scenario testing
	10-fold cross validation

	Future development
	Acknowledgement

